Abstract No. Fuji0413

Unusual Edge Shift of Stepwise-Reduced Cobalt Tetraphenylporphyrin and Tetrabutylphthalocyanine

E. Fujita (BNL) and M. W. Renner (BNL)

Beamline(s): X18B

Introduction: We have shown that metallo-porphyrins and phthalocyanines (M = Co and Fe) are effective photocatalysts in the reduction of CO_2 to CO and formate [1-3]. Metal(I) tetraphenylporphyrins (M^ITPP) and metal(I) tetrabutylphthalocyanines (M^ITBPc) do not react with CO_2 until they are reduced beyond the M(I) state. The site of reduction, metal *versus* macrocycle, along with changes in the catalyst's structural and electronic properties are important in understanding the active species in these catalytic reactions. Therefore we have recently measured the XANES of a series of CoTPP and CoTBPc.

Methods and Materials: Stepwise reduction of $Co^{II}TPP$ and $Co^{II}TBPc$ were carried out in CH_3CN using Na-Hg in homemade cells. The purity of these air-sensitive samples was examined by measuring optical spectra before and after the XANES measurements. The decomposition of samples is typically much less than 10 %. XANES of $[Co^{III}TPP(CI)]$ and $[Co^{III}TPP(py)_2]^+$ (py = pyridine) were also measured.

Results: XANES results of CoTPP and CoTBPc are shown in Figures 1 and 2, respectively. In $Co^{II}TPP^+$, the chloride ion donates more electron density to the cobalt(III) center than pyridine, and partially reduces the metal, resulting in a -1 eV edge shift. It is striking that XANES spectra for $Co^{II}TPP$, $[Co^{I}TPP]^T$, and $[Co^{II}TPP]^{2-T}$ exhibit no main-edge shift. However the pre-edge $(1s \rightarrow 4p_z)$ positions for $Co^{II}TPP$, $[Co^{I}TPP]^T$, and $[Co^{II}TPP]^{2-T}$ are sensitive to stepwise reduction. The main-edges for $Co^{II}TPP$, $[Co^{I}TPP]^T$, $[Co^{II}TPP]^T$, and $[Co^{II}TPP]^T$ also indicate no shift, however, the pre-edges are sensitive to the oxidation state of the cobalt centers (see Figure 2). The lack of edge shifts upon reduction of $Co^{II}TPP$ and $Co^{II}TPP$ suggests that considerable electron density resides in the ligand π system. However, the pre-edge shifts are consistent with the assignments from the optical spectra. In the case of CoTPP, the first and second reductions of $Co^{II}TPP$ are metal-centered to form $[Co^{II}TPP]^T$ and $[Co^{II}TPP]^{II}$, respectively. In the case of cobalt phthalocyanines, the first, second and third reductions of $Co^{II}TPP$ are metal-ligand- and metal-centered reductions, respectively, forming $[Co^{II}TPP]^T$, $[Co^{II}TPP]^T$ and $[Co^{II}TPP]^T$. Origin of pre-edge shift and doubling of the $1s \rightarrow 4p_z$ edge (in Co(I) and Co(I) species) are under investigation.

Acknowledgments: This work was performed at Brookhaven National Laboratory and funded under contract DE-AC02-98CH10886 with the U.S. Department of Energy and supported by its Division of Chemical Sciences, Office of Basic Energy Sciences.

References:

- [1]. D. Behar, T. Dhanasekaran, P. Neta, C. M. Hosten, D. Ejeh, P. Hambright and E. Fujita, "Cobalt-Porphyrin Catalyzed Reduction of CO₂", *J. Phys. Chem. A* **102**, 2870-2879 (1998)
- [2]. T. Dhanasekaran, J. Grodkowski, P. Neta, P. Hambright and E. Fujita, "p-Terphenyl-Sensitized Photoreduction of CO₂ with Cobalt and Iron Porphyrins. Interaction between CO and Reduced Metalloporphyrins", *J. Phys. Chem. A* **103**, 7742-7748 (1999)
- [3]. J. Grodkowski, T. Dhanasekaran, P. Neta, P. Hambright, B. S. Brunschwig, K. Shinozaki, and E. Fujita, "Reduction of Cobalt and Iron Phthalocyanines and the role of the Reduced Species in Catalyzed Photoreduction of CO₂", *J. Phys. Chem. A* **104**, 11332-11339 (2000)

Figure 1. XANES of CoTPP

Figure 2. XANES of CoTBPc